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1.0 Introduction 

 
THORN 10 is a theorem prover for first-order logic and is a major simplification and improvement on 

the predecessor programs FTP (Fast Theorem Prover) and THORN 1-9.  As a result of rationalising the 

proof process THORN 10 requires fewer primitive inferences rules than its predecessors and weighs in 

at only 550 lines of code. 

THORN is short for Theorem prover derived from HORN clause logic since it uses Prolog compilation 

techniques for speed.  THORN is a near-Prolog theorem prover similar to Stickel’s PTTP. 

2.0 Downloading and Installing 
 

THORN 10 runs under Shen with the standard library installed.  You can download THORN 10 and the 

sample programs from here.  If you have Windows, there is an image of Shen-Scheme in that directory 

for Windows.   Click on shen.bat and the standard library and THORN 10 will be installed. 

If you do not have Windows you need to create a working image of Shen with a standard library 

installed and then type (load “THORN 10.shen”). 

 

There are sample files in the folder Problems; to run the problems simply type (load <filename>).  Look 

in prf.txt where each proof is written from the last problem entered. 

 

pelletier.shen These are propositional calculus problems from Pelletier.   

 

schubert.shen (Schubert’s Steamroller) This contains Schubert’s Steamroller. 

       

L.shen A formalisation of propositional calculus from Mendelson in first-order logic. 

 

set.shen (basic set theory) This contains some basic set theory problems.      

 

ec.shen (equivalential calculus) This file contains equivalential calculus problems.   

 

group.shen (group theory) This file contains group theory problems requiring reasoning over identity.   

 

3.0 How THORN works in brief 

THORN contains two main top level functions.  kb-> (enter knowledge base) which enters a list of 

first-order propositions (props) which are then complied into a near-Prolog program.  These props 

constitute the background theory.  <-kb interrogates this theory; given a prop it returns either true 

(the prop is derivable) or false or may fail to terminate.   If true is returned a file prf.txt is created in 

the home directory with the proof enclosed. 

https://shenlanguage.org/download/thorn.zip
https://www.ub-net.de/cms/proverbox-ex-steam


kb-> overwrites existing information so it is not possible to increment a knowledge base nor remove 

any information from it.  The types of kb-> and <-kb are (list prop) → symbol and prop → boolean 

respectively. 

3.1 First Order Syntax in THORN 

1. Logical constants are =>, v, &, ~, <=>, all, exists. 

2. Symbols other than logical constants (proper symbols) are propositional atoms. 

3. Predicates and functions are represented by proper symbols. 

4. A term is either a proper symbol, string, boolean or number or a function heading n (n >= 0) 

terms. 

5. A first-order atom is a predicate followed by n terms all enclosed in [ … ].   

6. Any atom is a prop (proposition). 

7. If P and Q are props, so is [~ P], [P => Q], [P <=> Q], [P v Q], [P & Q].  Also [all X P] and [exists X 

P] where X is a proper symbol. 

8. The prefix eq stands for =; (e.g. [eq a b] is [a = b]). 

prop is a type and hence inputs can be tested for syntax correctness by the type checker.  See the 

problem files for examples of props. 

3.2 Flags 

Incrementally bounded depth first search is used up to a predetermined finite bound set by the user.  

THORN 10 is thus incomplete.   The global thorn.*depth* takes a natural number n and sets this bound 

at n.  The default is 20. thorn.*=l?* is a global variable that takes a boolean and if true compiles the 

background theory for reasoning with equality.  The default is false.  thorn.defaults is a zero place 

function that resets these variables to their defaults. 

4.0 How THORN works in more detail 

4.1 Derivation Rules 

There are 6 derivation rules in THORN. 

reverse Skolemisation (revsk) 
where Psk is the result of 

reverse Skolemising P 
 
 

   Psk__ 

P 

&right (&r) 
 

__P Q__ 
(P & Q) 

right (er) 
where PY/X is the result of 

replacing all free Xs in P by a 
fresh variable Y 

 

__PY/X __ 

( X P) 
 

hypothesis (hyp) 
where P and Q unify 

_________ 
P |- Q 

hypothetical disjunction (hypdisj) 

where  is the set of all 

complements of  where 

 = {P1 … Pn} – {Pi}  
 

 |- Pi 
(P1 … v Pn) 

indirect chaining 
 

where P and R1 unify with 

MGU  
 

(~ R), P <-- Q |-  (Q & … Rn) 
P <-- Q |- (R1 & … Rn) 

 

 

  



4.1.1 Comments 

Reverse Skolemisation proceeds as does ordinary Skolemisation except that the roles of the quantifiers 

are transposed; that is to say, universal quantifiers are eliminated in favour of Skolem functions and 

constants, and existential quantifiers remain.   This process converts to prenex form in which the matrix 

is in CNF. 

Reverse Skolemisation links with the right rule; the remaining existential quantifiers are eliminated 

and their bound variables replaced by free variables. 

Example: from (f a), (g a) prove ( x ((f x) & (g x))) 

(f a), (g a) |- ( x ((f x) & (g x))) 

(f a), (g a) |- ((f X) & (g X))                    by right  

(f a), (g a) |- (f X)                                    by hyp {X |-> a} 

(f a), (g a) |- (f a)                                    by hyp 

Indirect chaining combines backward chaining and indirect proof; that is, in Prolog style given a rule   

P <-- Q (P if Q) and a conjunctive goal (R1 & … Rn) if P and R1 unify with MGU  then R1 is replaced by 

the body Q and (Q & … Rn) are dereferenced by .    In indirect chaining (~ R) is added as an assumption 

since it is legitimate to assume the negation of what one is trying to prove. 

The rule of hypothetical disjunction allows us to deal with a case where the conclusion is a clause; that 

is a disjunction of literals.  Given (P1 … v Pn) we can nominate any Pi as the goal and assume the 

complements of the remainder.  This is really a generalisation of the rule of disjunctive syllogism that 

says from (P v Q) and (~ P) we can conclude Q.    Note that hypothetical disjunction is non-deterministic 

since it is not determined which Pi is nominated. 

 

4.2 Ordering the Rules into a Proof Strategy 
 

1. Reverse Skolemisation is applied first. 

2. &right and right are applied to exhaustion. 

3. Hypothetical disjunction is applied to the clauses generated.   This is a choice point.  

4. Proof by hypothesis and indirect chaining are applied to solve the problem.  The latter 

particularly is non-deterministic since different rules may be used to solve the problem. 

5. Prolog style chronological backtracking is used to deal with choice points. 

4.3 Implementation Notes 
 

In THORN, the Prolog convention is followed that (P <-- (Q & R)) is written (P <-- Q R), much as in Prolog 

where the conjunction sign is assumed implicitly.  The indirect chaining rule looks like this 

 

indirect chaining 
 

where P and R1 unify with MGU  
 

(~ R), P <-- Q |-  append(Q, (… Rn)) 

P <-- Q |- (R1 … Rn) 



In Prolog there is the limiting case that Q might be empty in which case P <-- Q is termed a fact.   Hence 

&right is not needed in stage 4.  We implicitly assume the rule 

finish 

____ 

() 

 

to terminate a proof when all goals have been solved. 

 

4.3.1 Implementation in Prolog 

These rules are implemented in Shen Prolog; the &right rule exists in two forms.  If in (P & Q), P is 

ground then the rule is applied such that P is solved without any dependency with Q.   In Edinburgh 

Prolog this can be written using cuts. 

&right([P & Q]) :- ground?(P), !, solve(P), !, solve(Q). 

&right([P & Q]) :- solve(P), solve(Q). 

 

Full backtracking is used over the choice points in the proof procedure. 

4.4 Completeness for Propositional Calculus 

THORN is sound, complete and terminating for propositional calculus at all bounds.  It is not complete 

for first-order logic. 

4.5 Compilation of Background Theories 

THORN is designed to be used wrt axiom sets which constitute background theories.  That is, Prolog 

compilation techniques are used to compile these theories to efficient code and this code is used to 

administer the hyp and indirect chaining rules.     Full unification with an occurs check is used. 

The compilation of these theories is enabled by entering a list of props to the function kb-> which 

augments the knowledge base by the props in question.  If the compilation succeeds kb-> returns 

compiled.  The type of kb-> is (list prop) → symbol.    

The modus operandus of the compilation process is 

1. Reduce the props to a list of clauses, 

2. For each clause (P1 … v Pn) generate n contrapositives where a contrapositive is created by 

nominating some Pi as the head and forming the complements of the remainder into the body.  

A contrapositive is thus similar in form to a Horn clause except that the head and the elements 

of the body are literals and can therefore use negation. 

3. Compile the contrapositives into code that reflects the indirect chaining rule mentioned.  

4. Define contrapositive procedure as similar to a Horn clause procedure i.e. a set composed of 

all and only those contrapositives whose heads share the same predicate.    At the head of 

each such procedure place code that enacts the hyp rule. 

A compiler optimisation is to check the background theory to see if it is a Horn clause theory.  If so, 

then the code is compiled without using indirect chaining but instead using ordinary Prolog backward 

chaining. 

  



4.6 Performance 

All figures were gained from a HP Envy workstation using Shen under Chez Scheme. 

 

4.6.1 Propositional Pelletier Problems 

The propositional Pelletier problems were solved in times too small to measure in an individual case 

and were returned with 0.0s.  The entire set of these problems, 16 in all, were processed as a batch by 

loading a file.  The cumulative time was 0.015625s to solve all of them and generate proofs.   The 

longest proof was the proof generated by (<-kb [[[p <=> q] <=> r] <=> [p <=> [q <=> r]]]) which took up 

4,405 lines.  This problem overflows Shen-SBCL. 

 

4.6.2 Set Theory  

This background theory was compiled into THORN. 

[all x [~ [m x e]]] 

[all x [all y [[[sub x y] & [sub y x]] <=> [=s x y]]]] 

[all x [all y [[sub x y] <=> [all z [[m z x] => [m z y]]]]]] 

[all x [all y [[pow x y] <=> [all z [[m z x] <=> [sub z y]]]]]] 

[all x [all y [[com x y] <=> [all z [[m z x] <=> [~ [m z y]]]]]]] 

[all x [all y [all z [[prod x y z] <=> [all w [[m w x] <=> [[pair w] & [[m [fst w] y] & [m [snd w] z]]]]]]]]]  

[all x [all y [all z [[int x y z] <=> [all w [[m w x] <=> [[m w y] & [m w z]]]]]]]] 

[all x [all y [all z [[un x y z] <=> [all w [[m w x] <=> [[m w y] v [m w z]]]]]]]] 

 

The following theorems were posed wrt this background theory. 

 

problem time (sec) inferences steps in proof 

(<-kb  [un a a a]) 0.0 1788 11 

(<-kb  [int a a a]) 0.0 1918 11 

(<-kb  [all x [all y [all z [[un x y z] <=> [un x z y]]]]]) 0.09375 610,778 42 

(<-kb  [all x [all y [[pow x y] => [m y x]]]]) 0.0 1931 7 

(<-kb  [all x [all y [[prod x y e] => [=s x e]]]]) 0.0 1,000 9 

(<-kb  [all x [all y [[sub x y] => [un y x y]]]]) 0.0 16,662 18 

 

4.6.3 Equivalential Calculus 

There is one function e where (e x y) holds if x is equivalent to y and one predicate p meaning is 

provable.  THORN could do three of the 13 equivalential calculus problems; the others were 

terminated after 3 minutes. 

 

problem time (sec) inferences steps in proof 

YQL 0.34375 2,974,612 75 

YQF 0.0 21,301 85 

YQJ 0.109375 1,255,142 69 

 

  



4.6.4 Schubert’s Steamroller 

problem time (sec) inferences steps in proof 

Schubert’s Steamroller 0.171875 3,433,030 78 

 

4.6.5 Mendelson’s System L 

A Formalisation of Mendelson’s axioms for propositional calculus with some theorems therefrom. 

 

[prv [imp P [imp Q P]]] 

[prv [imp [imp P [imp Q R]] [imp [imp P Q] [imp P R]]]] 

[prv [imp [imp [neg P] [neg Q]] [imp [imp [neg P] Q] P]]] 

[[[prv [imp P Q]] & [prv P]] => [prv Q]] 

       

[[prv [or P Q]] <=> [prv [imp [neg P] Q]]] 

[[prv [and P Q]] <=> [prv [neg [or [neg P] [neg Q]]]]] 

[[prv [equiv P Q]] <=> [prv [and [imp P Q] [imp Q P]]]] 

 

problem time (sec) inferences steps in proof 
(<-kb [prv [imp p p]]) 0.0 273 7 

(<-kb [prv [or p [neg p]]]) 0.0 630 8 

(<-kb [prv [imp [neg [neg p]] p]]) 0.046875 264,489 19 

 

4.7 Equality 

Extending reasoning wrt equality within an extended Prolog program requires adding the following 

rules to the knowledge base. 

=left  
 
(Xi = Yi) 
(F X1 …Yi …Xn) 
____________ 
(F X1 … Xn) 
 

=right 
 
_____ 
(X = X) 

 

In THORN, eq is used as the identity predicate; [all x [eq x x]] is added automatically when equality is 

required.  

For each contrapositive procedure headed by a predicate F the following procedure is appended 

(assertz in Prolog terms). 

(F X1 … Xn) <-- (=l-terms [X1 … Xn] [Y1 … Yn]) (F Y1 … Yn) 

=l-terms is a Prolog procedure. It allows the replacement of any term Xi by Yi if Xi = Yi can be proven.  

In Edinburgh Prolog it would be written as: 

=l-terms([X | Y], [W | Y]) :- eq(X,W). 

=l-terms([X | Y], [W | Y]) : - =l-terms(X, W). 

=l-terms([X | Y], [X | Z]) :- =l-terms(Y, Z). 



4.7.1 Group Theory 

Equality adds greatly to the branching of search space.   Only simple problems can be solved with this 

addition.  The following group theory axioms were used. 

 

[all x [all y [all z [eq [+ x [+ y z]] [+ [+ x y] z]]]]] 

[all x [eq [+ e x] x]] 

[all x [eq [+ x e] x]] 

[all x [eq [+ x [inv x]] e]] 

 

problem time (sec) inferences steps in proof 

(<-kb [all a [all x [[eq [+ a x] e] => [eq a [inv x]]]]]) 3.593 39,651,779 13 

(<-kb [all x [eq [inv [inv x]] x]]) 0.765625 16,573,203 13 

 


